UNIUNEA EUROPEANĂ

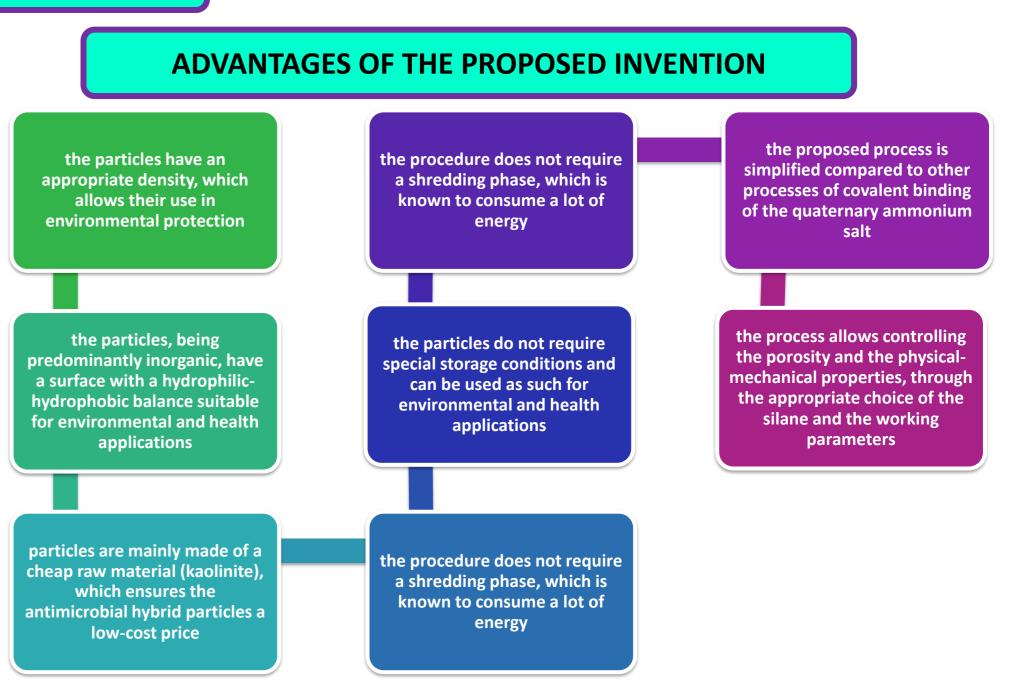
Fondul European de Dezvoltare Regională

Patent application No. RO134357A2

Hybrid antimicrobial particles and the process for their production Tanța Verona IORDACHE, Anamaria ZAHARIA, Andrei SÂRBU, Anita RADU, Ana Mihaela GAVRILĂ, Teodor SANDU, Elena Bianca STOICA, Steluța APOSTOL

National Institute for Research & Development in Chemistry and Petrochemistry ICECHIM Bucharest, 202 Spl. Independentei, 060021, Bucharest, Romania; office@icechim.ro

The invention relates to obtaining new hybrid antimicrobial particles with applications in environmental and health protection and the process for their production. In order to create quaternary ammonium-functionalized-kaolin microparticles with antimicrobial effect, we grafted the QAS on the surface of kaolinite microparticles by a three-step procedure: (i) the intercalation of dimethyl sulfoxide (DMSO) molecules in the kaolinite layer (K) in order to increase the interlayer space and to make it accessible for further organic chemical grafting; (ii) chemical modification of kaolin intercalated with DMSO (K-D) with a silane monomer containing vinyl groups vinyltrimethoxysilane (VTMS)/ vinyltriethoxysilane (VTES); and (iii) free-radical polymerization of a quaternary ammonium salts with vinylbenzyltrimethylammonium chloride (VBTAC). Chemical indicators, chemical oxygen demand (COD) and total phosphorous (TP), associated with the disinfection process were lower with approximately 15% and 42%, respectively, after treatment with the functionalized microparticles (vs. the initial WW sample). Although, kaolin alone presented a good bactericidal activity against Gram-negative bacteria such as E. Coli, the bacteriological indicators of the quaternary ammonium-functionalizedkaolin microparticles have indicated that such materials particularly contribute to the reduction of coliforms, C. perfringens but also E coli O157 by 82%, 65% and 67% respectively [A.M. Gavrila, A. Zaharia, L. Paruch, F.X. Perrin, A. Sarbu, A.G. Olaru^c, A.M. Paruch^c, T.V. lordache^c, Molecularly imprinted films and quaternary ammonium-functionalized microparticles working in tandem against pathogenic bacteria in wastewaters, Journal of Hazardous Materials 399, 123026, 2020. https://doi.org/10.1016/j.jhazmat.2020.123026].


CHARACTERISTICS

Chemical and bacteriological indicators evaluated after 24 h contact with WW, and the standard error of means (SE)

Indicator	WW reference*	K-QAS	К
chemical oxygen demand (COD \pm SE), mg L ⁻¹	11275.0 ± 17.21	9549.0 ± 201.50	8751.7 ± 202.28
Total phosphorus (TP ± SE), mg L ⁻¹	57.70 ± 0.02	33.90 ± 1.44	31.20 ± 1.08
E coli O157 ± SE, CFU·100 mL ⁻¹	1.00 ± 0.00	0.33 ± 0.33	0.00 ± 0.00
Total Coliforms ± SE, CFU·100 mL ⁻¹	120.00 ± 0.03	26.33 ± 5.50	34.67 ± 6.33
C. perfringens ± SE, CFU·100 mL ⁻¹	82.00 ± 0.02	29.33 ± 3.48	57.67 ± 3.18

*the volume of wastewater was 100 mL/0.5 mg of microparticles

Solution developed in the project: *M*-ERA.NET II, the European Union and the National Authorities UEFISCDI (Romania, ctr. no. 71/2017 TANDEM)

Contact: Verona Iordache, tanta-verona.iordache@icechim.ro, https://icechim.ro/en/rd-groups/g1-advanced-polymer-materials-and-polymer-recycling/

Project: "Development through innovation" Beneficiary: National Institute for Research and Development in Chemistry and Petrochemistry – ICECHIM

Investim în viitorul tău! Proiect cofinanțat din Fondul European de Dezvoltare Regională prin Programul Operational Regional 2014-2020

> facebook.com/inforegio.ro www.inforegio.ro